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Abstract. Majorana fermion representations of the algebra associated with spin, charge, and
flavour currents have been used to transform the two-channel Kondo Hamiltonian. Using a path
integral formulation, we derive a reduced effective action with long-range impurity spin–spin
interactions at different imaginary times. In the semiclassical limit, it is equivalent to a one-
dimensional Heisenberg spin chain with two-spin, three-spin, etc, long-range interactions, as a
generalization of the inverse-square long-range Haldane–Shastry model. In this representation
the elementary excitations are ‘semions’, and the non-Fermi liquid low energy properties of the
two-channel Kondo model are recovered.

The two-channel Kondo model is known to have a non-Fermi liquid (non-FL) low energy
fixed point in the overscreening case, and has been put forward as a model to explain non-FL
behaviour observed in several quite different physical systems at low temperatures, such as
certain heavy fermion alloys and two-level systems [1]. There are exact solutions for the ground
state and thermodynamics of this model derived from the Bethe–Ansatz equations [2, 3], but
there are still continuing efforts to find an intuitive understanding of the nature of excitations
in the neighbourhood of the low energy fixed point. The numerical renormalization group
[4], conformal field theory (CFT) [5], and the bosonization approach [6–8] made a number of
predictions for many-body excitations at the fixed point, but they do not provide an intuitive
interpretation of these excitations as is possible at the FL fixed point of the single channel
Kondo model [9].

It was shown a long time ago that the single channel Kondo model can be reduced to
an inverse-square one-dimensional Ising model [10], which is a prototype classical model in
statistical physics [11, 12]. Moreover, such a reduced effective model helped Anderson and
co-workers to establish the correct FL behaviour of the low energy fixed point for the one-
channel model in the early 1970s [10, 13]; namely, the Ising spin–spin correlation function
should behave as 1/τ 2, where τ is the imaginary time. On the other hand, the non-FL behaviour
of the two-channel Kondo model is characterized by the dynamic correlation function of the
impurity spin, 〈Tτ �Sd(τ )· �Sd(0)〉 ∼ 1/| τ |, but its physical meaning, unfortunately, has not been
fully understood yet. To our knowledge, the possible connection of the overcrowd two-channel
Kondo model with quantum spin models has not been explored so far.
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In this Letter, the algebra of total spin, charge, and flavour currents of the two-channel
Kondo model are represented in terms of Majorana fermions. In the path integral formulation
we derive a reduced equivalent quantum Heisenberg spin model, in which the impurity spins
at different imaginary times are strongly correlated, including two-spin, three-spin, etc, long-
range exchange interactions. In particular, the two-spin interaction has the exact the same
form as the integrable inverse-square one-dimensional Heisenberg spin chain—the so-called
Haldane–Shastry (HS) model [14]—while the three-spin and four-spin interaction parts, etc,
are natural generalizations of the HS model. The non-FL fixed point action of the two-channel
Kondo model is identified with the two-spin interaction part (the HS model), and the elementary
excitations of this low energy non-FL fixed point are spinons (S = 1/2 objects) obeying
semion (half-fractional) statistics intermediate between those for bosons and fermions [15].
Actually, the two-spin long-range interaction part forms an ideal semion gas, while the three-
spin long-range term is a dangerous irrelevant interaction, leading to important corrections to
the thermodynamic properties. The fourth and higher order terms are irrelevant variables. The
non-FL properties of the two-channel Kondo model are thus recovered.

We start with the Hamiltonian of the two-channel Kondo model in the form

H = H0 + HI

H0 = vf

2π

2∑
j=1

∑
σ=↑,↓

∫ +∞

−∞
dxψ†

j,σ (x)(i∂x)ψj,σ (x)

HI =
∑

a=x,y,z
JaS

a
d J

a
s (0) (1)

where we have retained only the s-wave scattering, linearized the fermion spectrum, and
replaced the incoming and outgoing waves with two left-moving electron fieldsψj,σ (x). J a

s (x)

are the conduction electron spin current operators. J a
s (x) = ∑

j,σ,σ ′ : ψ†
j,σ (x)s

a
σ,σ ′ψj,σ ′(x) :,

where sa are spin-1/2 matrices and :: means normal ordering. We introduce charge and flavour

currents Jc(x) = ∑
j,σ : ψ†

j,σ (x)ψj,σ (x) : and J a
f (x) = ∑

j,j ′,σ : ψ†
j,σ (x)t

a
j,j ′ψj ′,σ (x) :, where

taj,j ′ are generators of an SU(2) symmetry group. Following Affleck and Ludwig [5] the free
part of the Hamiltonian can be rewritten as a sum of three commuting terms by the usual point
splitting procedure (Sugawara construction):

H0 = vf

2π

∫ +∞

−∞
dx

[
1

8
: Jc(x)Jc(x) : +

1

4
: �Jf (x) · �Jf (x) : +

1

4
: �Js(x) · �Js(x) :

]
(2)

while the interaction term is expressed only in terms of the electron spin currents and the
impurity spin. The information about the number of channels is contained in the commutation
relations obeyed by the spin currents[

J a
s (x), J

b
s x

′] = iεabcJ a
s (x)δ(x − x ′) +

ki

4π
δa,bδ

′(x − x ′)

indicating that J a
s (x) form an SU(2) level k = 2 Kac–Moody algebraic equation. Meanwhile,

the charge and flavour currents satisfy

[Jc(x), Jc(x
′)] = 2kiδ′(x − x ′)

[J a
f (x), J

b
f (x

′)] = iεabcJ a
f (x)δ(x − x ′) +

ki

4π
δa,bδ

′(x − x ′).

They form a U(1) Kac–Moody and another SU(k = 2) level-2 Kac–Moody algebraic equation,
respectively.
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It is now quite natural to introduce a Majorana representation of the spin current operators,

J x
s (x) = −iχ2(x)χ3(x)

J y
s (x) = −iχ3(x)χ1(x)

J z
s (x) = −iχ1(x)χ2(x) (3)

where χ1(x), χ2(x), and χ3(x) are left-moving free Majorana fermion fields, and it can be
shown to reproduce the SU(2) level-2 Kac–Moody commutation relations. It is important to
note that this representation is only appropriate for the two-channel model, as it leads to a
level-2 algebraic equation. It would be inappropriate for the single-channel Kondo model
where the corresponding spin current generates a level-1 algebraic equation.

In a similar way, we can also introduce Majorana representations for the flavour currents

J x
f (x) = −iχ ′

2(x)χ
′
3(x)

J
y

f (x) = −iχ ′
3(x)χ

′
1(x)

J z
f (x) = −iχ ′

1(x)χ
′
2(x) (4)

which reproduce the commutation relations satisfied by the flavour currents, and Jc(x) =
−2iχ ′

4(x)χ
′
5(x) representing the charge current operator. Note that χ ′

α with α = 1, 2, 3, 4, 5
are also left-moving free Majorana fermion fields. It is well known that the dynamics of charge,
flavour and spin are completely determined by the commutation relations of these current
operators. Though the spin currents of the two-channel Kondo model can be represented in
terms of three Majorana fermion fields, χα(x) (α = 1, 2, 3), they cannot be given any simple
physical interpretation in terms of the original conduction electrons ψj,σ (x).

Now, using these current operators, the Hamiltonian (2) is presented as a quartic form in
the Majorana fields. This form is convenient if one pursues a purely algebraic approach as in
the CFT [5]. However, for our purposes it is more convenient to perform an inverse Sugawara
construction, using again the point splitting procedure, and rewrite the terms quartic in the
Majorana fermions as kinetic energy terms which are quadratic [16, 17]:

: Jc(x)Jc(x) := 4
5∑

α=4

χ ′
α(i∂x)χ

′
α(x)

: �Jf (x) · �Jf (x) := 2
3∑

α=1

χ ′
α(i∂x)χ

′
α(x)

: �Js(x) · �Js(x) := 2
3∑

α=1

χα(i∂x)χα(x). (5)

The model Hamiltonian is thus transformed into the following two parts [18]

Hc + Hf = vf

4π

5∑
α=1

∫ +∞

−∞
dxχ ′

α(x)(i∂x)χ
′
α(x)

Hs = vf

4π

3∑
α=1

∫ +∞

−∞
dxχα(x)(i∂x)χα(x)− iJ

2

∫ +∞

−∞
dxδ(x)�Sd · �χ(x)× �χ(x). (6)

Hc + Hf describes the non-interacting charge and flavour degrees of freedom. It is invariant
under the symmetry group U(1)⊗ SU(2)2 described by the five free Majorana fermion fields
χ ′
α(x) (α = 1, 2, 3, 4, 5). Hs is the main part of the model and it describes the spin degrees of

freedom with three left-moving Majorana fermion fields χα (α = 1, 2, 3) interacting with the
impurity spin. It has the SU(2)2 symmetry so that the full Hamiltonian is described by eight
different Majorana fermion fields.
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In the two-channel model Hamiltonian,Hs will give rise to the essential low energy physics
of the model because it is the only part which includes the interaction. The reduced partition
function of the model Hamiltonian with Hs can be written in the form of a functional integral:

Z =
∮

D#̂

∫ 3∏
α=1

Dχα exp

{
iSdω(#̂)−

∫ β

0
dτ

(∫ +∞

−∞
dx

3∑
α=1

1

2
χα∂τχα + Hs

[
#̂, χα

])}
(7)

where the impurity spin part has been expressed in terms of a spin coherent state path integral
[19], #̂ = (θ, φ) is a unit vector describing the family of spin states |Sd,md〉, the eigenstates of
S2
d and Szd have eigenvalues Sd(Sd +1) andm, respectively, and the periodic boundary condition

is assumed for the spin vector variable.

iSdω
(
#̂
) = iSd

∫ β

0
dτ(1 − cos θ)

·
φ (8)

is known as the Berry phase of the spin history, which is a purely geometric factor and will
play no essential role here. In the path integral representation, the reduced Hamiltonian Hs is
expressed as

Hs

[
#̂, χα

] = vf

4π

3∑
α=1

∫ +∞

−∞
dxχα(x, τ )(i∂x)χα(x, τ )

− iJSd
2

∫ +∞

−∞
dxδ(x)#̂(τ ) · �χ(x, τ )× �χ(x, τ ) (9)

whereχα(x, τ ) (α = 1, 2, 3) are real Grassmann variables corresponding to the three Majorana
fermion fields and Jδ(x)#̂(τ ) corresponds to a local non-oblian gauge field. As far as χα are
concerned, the path integrals over them are bilinear. The partition function can thus be rewritten
in the following form

Z =
∮

D#̂ exp
(
iSdω(#̂)

) ∫ 3∏
α=1

Dχα exp

{
−1

2

∫ β

0
dτ
∫ +∞

−∞
dx)†(x, τ )M̂)(x, τ )

}
(10)

with a three-component vector)†(x, τ ) = (χ1(x, τ ), χ2(x, τ ), χ3(x, τ )) and its transposition
)(x, τ). The matrix is denoted by M̂ = (∂τ − vf i∂x)I + iJSdδ(x)M̂ ′(τ ), where

M̂ ′(τ ) =
 0 −#z(τ) #y(τ)

#z(τ ) 0 −#x(τ)

−#y(τ) #x(τ) 0

 (11)

vf = vf /2π, and Î is a 3 × 3 unit matrix. Then we integrate out the variables χα and obtain
an effective action which only contains the spin vector variables:

Z = Z0

∮
D#̂ exp

(
iSdω

(
#̂
)− Seff

)
Seff = − 1

2
Tr ln

[
1 + iJSdδ(x)ĜM̂ ′(τ )

]
(12)

where Z0 = 1
2 det

[
(∂τ − vf i∂x)Î

]
is the partition function of the non-interacting limit of Hs,

and its free Majorana fermion propagator is given by Ĝ = (∂τ − vf i∂x)−1. Tracing here is
taken over space, imaginary time, and the matrix indices. Using the identity

Tr ln(1 + Â) = −
∞∑
n=1

(−1)n

n
Tr(Â)n
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we obtain the general expression for the effective action

Seff =
∞∑
n=1

(−iJSd)n

2n

∫ β

0
dτ1 . . .

∫ β

0
dτnG(τ12)G(τ23) . . .

×G(τn1)Tr
[
M̂ ′(τ1)M̂ ′(τ2) . . . M̂ ′(τn)

]
(13)

where the space integration has been easily carried out due to the presence of the delta function
so that the free Majorana fermion propagators are replaced by the local one

G(τ) = 1

vf

π/β

sin(πτ/β)

and τij denotes τi − τj . Note that τ1, τ2, . . . , τn are unequal imaginary times. In fact S(n)eff is
the contribution of a one loop diagram made of n local propagators G(τij ) and n local vertices
iJSdM̂ ′(τi). The factor 1/(2n) in front of each term is due to symmetry of the corresponding
diagram. In the above derivation, the impurity spin is not specified to be 1/2 and only the spin
of the conduction electrons has been assumed to be 1/2. However, the following discussion
will focus on the overscreening case (Sd = 1/2).

Up to the second order of JSd, the effective action is worked out as

S
(2)
eff = 1

2
(JSd)

2
∫ β

0
dτi

∫ β

0
dτjG

2(τij )#̂(τi) · #̂(τj ) (14)

which describes a Heisenberg spin chain with an inverse-square long-range antiferromagnetic
interaction between the impurity spins at two different imaginary times. The sign of the
original Kondo exchange coupling (ferromagnetic or antiferromagnetic) is not distinguishable
here. Note that the spin coherent state path integral has assumed a periodic boundary condition
for the spin variable so that the Heisenberg spins in fact sit on a circle of length β with exchange
inversely proportional to the square of the distance between spins. This has the same form
of the path integral functional as the one-dimensional Heisenberg spin chain with an inverse-
square long-range interaction, the HS model [14] in the semiclassical limit. Therefore, all the
static properties of the HS model can be readily translated to the present model.

(a) The low energy states ofS(2)eff in the large-β limit are described by the chiral-SU(2) invariant
k = 1 Wess–Zumino–Witten model, which is a conformally invariant Gaussian field
theory. S

(2)
eff thus can represent a fixed point action of the two-channel Kondo model,

and the elementary excitations are spinons, i.e., the S = 1/2 particles instead of spin
waves which are the elementary excitations of an ordered antiferromagnet. The spinons
satisfy semion statistics intermediate between bosons and fermions, being an example of
the exclusion statistics interpretation of fractional statistics [15].

(b) S(2)eff describes a free gas of spinons, being a fundamental model for gapless spin-1/2
antiferromagnetic spin model, and the dominant asymptotic spin–spin correlation function
of S(2)eff is algebraic with an universal exponent η = 1 without logarithmic corrections [15].

〈Tτ #̂(τi) · #̂(τj )〉 ∼ 1

| τi − τj | (15)

and the impurity spin variable #̂(τ ) thus acquires a dynamic scaling dimension 1/2. Such
behaviour is also the universal spin–spin correlation function of the low energy non-FL
behaviour of the two-channel Kondo model [5–8], leading to a marginal FL form [20] of
the impurity spin spectrum: Imχd(ω + i0+) ∼ tanh( ω

2T ).

(c) We can thus conclude that S(2)eff represents the low energy non-FL fixed point action of the
spin part of the two-channel Kondo model.
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The third order of JSd can be viewed as a correction to the fixed point action, which has
been derived as

S
(3)
eff = −i

6
(JSd)

3
∫ β

0
dτi

∫ β

0
dτj

∫ β

0
dτkG(τij )G(τjk)G(τki)#̂(τi) · (#̂(τj )× #̂(τk)

)
. (16)

This term describes a Heisenberg spin chain with a long-range interaction of the impurity spins
at three different imaginary times, and is completely antisymmetric in its indices (i, j, k).
In accordance with the low energy non-FL fixed point action S

(2)
eff , this interaction term is

irrelevant because it has a dynamic scaling dimension 3/2. However, it is this interaction
that distinguishes the sign of the original Kondo exchange coupling, so that it is a dangerous
irrelevant operator. It is conceivable that the non-FL thermodynamic properties of the two-
channel Kondo model around the low energy fixed point are derived from a perturbation theory
of S(3)eff . For instance, the second order perturbation calculation of S(3)eff gives rise to the extra
low temperature specific heat due to the presence of the impurity spin as T ln T . Detailed
calculations of the thermodynamic properties will be given in a future publication.

When the expansion is carried out to the fourth order, we obtain a four spin long-range
interaction of the impurity spins at four different times

S
(4)
eff = 1

4
(JSd)

4
∫ β

0
dτi

∫ β

0
dτj

∫ β

0
dτk

∫ β

0
dτl

×G(τij )G(τjk)G(τkl)G(τli)#̂(τi) · #̂(τj )#̂(τk) · #̂(τl) (17)

which is clearly irrelevant as far as the low energy fixed point is concerned, as its dynamic
scaling dimension is 2. All higher order terms thus contain no essential physics and can
be neglected completely. Therefore, the reduced effective action will be given by Seff =
S
(2)
eff +S(3)eff , which is a natural generalization of the inverse-square long-range HS spin exchange

model.
In summary, we use the Majorana fermion representation of the algebra of spin, charge, and

flavour currents to transform the two-channel Kondo model. In a path integral formulation, we
derive a reduced effective action of the two-channel Kondo model, which is a one-dimensional
Heisenberg spin chains with two-spin, three-spin, etc, long-range interactions, as a natural
generalization of the inverse-square long-range HS spin model. It is argued that the nontrivial
two-channel Kondo physics in the low energy regime can be reproduced from the first two
terms of the spin action, and the other relevant issues are under investigation. As pointed out in
[21], the infinite set of multiplicative degeneracy of HS model [15] is due to the hidden SU(2)
Yangian symmetry. Comparing our present formulation with the CFT treatment of the two-
channel Kondo problem [5], this statement becomes apparent. After completing the present
work, we became aware of a general review article [22] on exact results for highly correlated
electron systems in one dimension, where some analogies of the inverse square long-range
models to other interacting models are discussed within the framework of the Bethe–Ansatz
equations.

One of the authors (G-M Zhang) would like to thank A C Hewson for his helpful discussions
on the two-channel Kondo model.
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(Amsterdam: North Holland)
[18] Zhang G-M, Hewson A C and Bulla R 1999 Solid State Commun. 112 105
[19] For the references of the spin coherent-states path integral see

Auerbach A 1994 Interacting Electrons and Quantum Magnetism (Springer)
[20] Varma C M et al 1989 Phys. Rev. Lett. 63 1996
[21] Haldane F D M et al 1992 Phys. Rev. Lett. 69 2021
[22] Schlottmann P 1997 Int. J. Mod. Phys. B 11 355


